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The problem of motion stability relative to a part of the variables [1,2] is
examined, The method for solving this problem, proposed in [3] for linear
stationary systems, is extended to solving nonlinear problems, Such an app-
roach permits the obtaining of stability and instability criteria for motion rel-
ative to a part of the variables in the linear approximation in those cases when
the well-known results in [4, 5] are inapplicable; it also yields a means for
solving the problem posed here of absolute motion stability relative to a part
of the variables for nonlinear controllable systems. Examples of nonlinear sys-
tems are cited, showing that the stability domain for separately specified co-
ordinates can be wider than the stability domain for all the coordinates charact-
erizing the system'’s state,

1. We consider the system of ordinary differential equations of perturbed motion

dz;/dt = X;(xy, ..., zn), i =1, ..., 1 (1.1)
We take up the question of the stability of the unperturbed motion z; = 0 (i =
1, ..., n) relativeto 2y, ..., g (m >0, n=m -+ p, p >0). Weden-
ote these variables y; = &; (i = 1, ..., m) and the ones remainingz; = Tm+;
(j =1, ... P) [1,2]. Letthe functions X, be power series in powers of ¥;
(i =1,...,m) and z(j=1,.. . p), converging in the domains
ly1|<h7 l::l, PR ([ lel<H<OC, ]:11 -"7p(1'2)

where h and H are some constants, Now the Eqs, (1.1) of perturbed motion are

dy, & _

—l—i?—/tj'— == Zaikyk 'J[— Zbuzl + Yi(ylv v Yme B1eenn, Zp)» l:17 ceoym (1,3)
k=1 1==1

dz. m 14 )

d; = ZCjkyk+Zdlel+Zj(y1,...,ym,Zl,...,Zp), ]’——‘-1,,p

l==1

]

k
Here ajx, by, Cjx, dj are constants, Y; and Z; are functions of the variables

Yir « « -+ Ymy 211 - - +» Zy, which in domains (1.2) are expanded into series in pow-
ers of these variables, where the expansions begin with terms of order no lower than
the second, The variables 2z, .. .,2Z, are always bounded; this assumption is the

initial one in the investigation of system (1. 3) in all the cases considered in Sects, 2
and 3,
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We introduce the notation

A = {aw}, B = {by}, C={cn}, D ={dy}
Then the equations of linear approximation of system (1, 3) are

Y = Ay + Bz, z = Cy + Dz (1.4)
y = (yl’ .. ~1ym)v z = (zl’ e v ey zp)
We consider the matrix K = (B’, D'B’, .. .,D'’"B’), where B’ and D’ are

the transposes of matrices B and D, Let the rank of matrix K equal N. It
was shown in [3] that the question of the stability of the unperturbed motion of system
(1.4) relative to variables ¥, . . ., Y is equivalent to the same question for the
specially constructed system

Y =Ay + B, p =Cy + Dip

oforder (m + N), N < p, where p = Lz is a matrix whose rows are the line-
arly-independent columns of matrix K; B,, Cy, D, are constant matrices of approp-
riate dimensions, Hence we see that the question on the stability of the unperturbed
motion of system (1, 3) relative to a part of the variables y,, . . .,ym in the linear
approximation can be considered in the following class of systems (we shall stay with-
in the framework of the notation adopted and, as before, consider the variables y,,

. ., Ym to be those relative to which the stability of the unperturbed motion is be-
ing studied):

m

dy; L5
d_;: Zaikyk—l-yi(yl,--.,ym,zp---,Zp), i=1,....m (1.9)
k=1
45\ - .
T zcjkyk + djlzl + Zj (yl’ ooy Ymy 21eeey Zp)’ ]= 1,..., p
k=1 =1

A criterion was obtained in [4] for the asymptotic stability of the unperturbed motion
of system (1, 5) relative to ¥,,. . ., ¥, in the linear approximation, An instability
criterion was obtained in [5] and the critical case of one zero root was considered,
The results mentioned were obtained under the following three constraints;

1) Y 0,...0, 2, .. 2)=0, i=1,...,m

2) |Y’l(y1""7 ym’zlv---szp) I < .zllhijlyjl, i = '1, [P /(4
=

where h;; are sufficiently small positive constants (under the assumptions made con-

cerning functions Y; the condition 2 assumes the terms linear in Yy - - :Ym are
absent in functions Y; );
3) the variables 2;, . . ., 2, of system (1,5) are always bounded, i.e. N z; | <<

H< o, j=1,...p.

In the present paper, for special cases of system (1.5), we have obtained stability
and instability criteria for the unperturbed motion relative to variables ¥,, . . ., ¥m
in the linear approximation, which do not presume constraints 1 and 2 on the functions

Yi(i -« s Yms B1s e ooy Bp)e
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2. Let the Egs. (1.3) of perturbed motion be

dy. " L
—at—’ = Zaikyk + Zb“z, YWy oo s Ymr Bryeen Bp), = 1,m (2.1)
K==1

=1
dsz; &
a3 E ldflzl

We assume that
Yi0,..,0,2,...,2)=Y"(E,...,2)= (2.2)
U, (zg, . . G Zp) Utz . . . Zp), i=1,...,m
where U;' (z,, . . ., 2,) is a homogeneous form in variables Zy, .+ . .y Zp of order

I, I < r, r isa finite number. From functions Y; (¥, . . -, ¥ms Z1s + + -y Zp)
we pick out the terms linearin ¥y,, . . ., Ym. We take it that

T
A

L. (2.3)
Y’i* (?11’ e Yy 28y .- §z'p) = 2‘ ?}anij* (ZI’ .. ,zp)
=1

(?ij* 31y o+ -0 2p) = U R A i e U (21, « - -5 Zp))
Here U,V isa form of the same kind as U} (g5, . . ., 2,), I <5, s is a finite

number. Thus, the functions Y; (¥4, - - -, Yms Z1s - - +» Zp) insystem (2, 1) have
the form

m
Yi(yl* e YmaZ1s ey zp) = Yio(zls seey z;o) + Ei yi?ij* (211-"9217) + (2.4)
J==

¥k 5
Y; *(Ulv--'iym,zl’---vzp)a i=1,...,m

where Y ;** (yy, . . -y Yms %15 - - -y 3p) satisfy conditions 1 and 2, while the fun-
ctions Y;° (3, ....2,) and Y;;*(z, ...,z satisfy conditions(2.2) and
(2.3)

Let us show that the question of the stability of the unperturbed motion of system
(2.1) relative to ¥, . . .Yy, in the linear approximation can be reduced to that
of the stability in the linear approximation of a specially chosen system for which
the conditions is [4, 5] are fulfilled, To do this we take the following equations

dy; - < W (2.5)
di :Z“ikyk+zbiizz +Y (2,020
k=1 I=1
m
Z!fﬁ’u*(zx,«..,zp), i=1,...,m
=1
dzJ L
dt ”"Zdﬂzu Jj=1,...,p
Fe=i

as the first-approximation system for Egs. (2.1). We introduce the new variables
P

H:’,]): I%bﬂz, **' Ugi(Zl,...,Zp)J(‘ ...+U,-li(31,...,zp) (2'6)
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2 —-,.. -v‘. » 3
n? = Dﬁt])(zl,...,zp)+...+ Oy, . yzp); ij=1,...,m

since U;' and U,V are [ -th-order homogeneous forms in the variables Zy, . .
-y %p, they can be written as

U= D Mgl %
ot Fay=1 p
04 = T S )
Gt Fo=t 4
Definition., ‘The two collections of numbers (o), . .., @,) and (a'y, .
., O0p') are said to be distinct if a; % ;" for even one i.
Let N be the number of distinct collections (a,, . . ., &,) such that @a; +
+ a, = I. Thenwith form U,' we associate the vector (g;*, @i . .

. qﬂ 1), l.e., we associate the vector Q;(1) with the new variahle p;®
WO > Q0 =
1\/
(bila LRI bipvqiluv .. -’QillNl’ ey Qirllv e ey qn“ )
Analogously we associate the vector Q,;;® with the new variable p;;® :

2N, 1 2N
Bif® = Qi = (qij™ -+ @ity - - o Quss™y -« - Qijs %)

We assume that vectors Q;® and Q;;® are linearly independent ( otherwise, we
consider those among them that are linearly independent), Two cases are possible
with the thus-introduced new variables,

First case, System (2.5) is reduced to the form

dy
- = Zamyh + i + Lytum (2.7
i=1
dp(l) m 1
). (1
= XL Y T
=1 1, e=1
@)
My L(z) ) L(z) @ . _
T wili + wielie, L, v,y =1,.
l=1 l, e=1

In what follows (2, 7) will be called the system of  -form of the original system(2, 5).
1t is obvious that the behavior of the variables characterizing system (2. 7) coinpletely
describes the behavior of variables ¥, . . ., Ym of system (2,5).

Second case, System(2,5)is not reduced to the system of u -form, i.e.

it appears as m

dy; s 2.8
T'—Zaﬂuyh_"pl)_{_zyﬂl() ( )

k=1 j=1
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di "‘Ul (21,...,Zp)+...+Uy~j*(zl,...,3p)

—2 =Ty (e a2+ O e 20 G vy =10,
dze 2 d
_di_::z 15p+ 8*———1,...,}3

Then once more we introduce the new variables

B = UM% (o, ooy z) + o U2% (g, s 2) (2.9)
Poy® = U™ (20, .. ., 2) + ...+ U™ (5, . . . zp)
i»ﬁ,?zi,...,m

where we choose only those of variables (2, 9) whose corresponding vectors Qifx)
and Qgy® cannot be represented in terms of Q,® andQ® (i, j=1, ..., m).
1t can be shown that by continuing this procedure, we can always come to a system
of u-form of system (2, 5) at a finite step of repetition of the reasoning,  Indeed,
this can always be done by introducing variables (2.6), (2.9),..... in such number
that the corresponding linearly~independent vectors Q,®, Q,» and Q;;®, Qoy®
form nonsingular square matrices,

We note that although the dimension of the M -form equations can exceed that
of the original system, the stability of the original system (2, 5), relative to all vari-
ables will not, in general, follow from the stability of the unperturbed motion of the
system of u~-form, as is true for linear stationary systems when the dimension of the
system of p -form equals that of the original system [3],

The two theorems that follow stem from the reasonings presented, as well as from
the results in [4, 5],

Theorem 1. If all the eigenvalues of the linear part of the p -form equa-
tions of system (2, 5) have negative real parts, then the unperturbed motion of system
(2. 1) is asymptotically stable relative to ¥y, - - -» Um-

Theorem 2. If among the eigenvalues of the linear part of the M -form
equations of system (2, 5) there is even one with a positive real part, then the unpert-
urbed motion of system (2, 1) is unstable relative to Y, - . -+ Um-

3. Let the Eqs. (1.3) of perturbed motion be of the form

= Zatkyk 1 Zb‘uzl + Yoo YmiBoeen Zp)y  B=15m (3.

=3 ]

__“_—_-Zdﬁzl—{—Zj(yl,...,ym,zl,...,zp), }."——-‘i,...,p

i=1
Let the following conditions be fulfilled:

a) the functions Y (Y1, -+, Yms %1y - + +, 3p) €A1 be represented in form(2. 2)
—(2.4);
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b) the functions Z; (yy, . . ., Yms 2y, . - ., 3p) satisfy conditions of type 1 and
2

Z; 0,...,0, Zyy e e 0y 3p) =10

lZ;'(yh---,ym,zn---vzp)l(\izlﬁijlyjl, i=1,...,p
i=

where h;; are sufficlently small positive constants, In this case we can obtain
criteria for system (3, 1), similar to Theorems 1 and 2,

Example 1, Letthe equations of perturbed motion be

V=il al Y @ a ), D=2t at a3

27 =25+ Zi @y, zy o2y =104

(1= Zy=z1—12, Z3=—dy+25—25—3, 24=55+ 2+
2zg + 2z,)

In the investigation of stability relative to all variables of the unperturbed motion of
system (3, 2) a critical case arises when the stability and the instability of the unpert-
urbed motion is determined by the form of the nonlinear terms. Let us consider the
question of the asymptotic stability of the unperturbed motion of system (3. 2) relative
to variable y. We note that the criterion in [4] is inapplicable here, We make use
of the results in Sects, 2 and 3 of the present paper. We introduce the new variables:
m =& ne = 8% System (3, 2), after reduction to the system of p -form as in
Sect, 2, appears thus;

Vo= rt Bt Y a2 (8.3)
' = =yt Zy Yy 2120y Mo = Mat Ze (Y, 21, - -y 2a)

ug" = —~bpy — Sps + Z7(y, 25, . - -, 29)

;7 =2, 4+ Z; (Y, 210+ - -» 39

20 =22+ Zy+ 23+ 2Z,, Z¢= P}Z,+ 2,2,
Z, = (—2Z, + Z, + Zy) + (—4zy + 225 + 22) §Z5

We assume the fulfilment of: conditions 1 and 2 by function Y (y, z, . . ., z,), con-
dition b) by function Z; (y, 25, ...,2) (: =5, 6, 7), and condition 3. Then, acc-
ording to [4], the unperturbed motion of system (3, 3) is asymptotically stable relative
to variables ¥, Wi, pg, M3, and, hence, according to Sects, 2 and 3, the unperturbed
motion of system (3, 2) is asymptotically stable relative to variable y.

N ote. Letusconsider the case when the functions Y ;** (y,, . . -,¥m» 21 -
.y 2p)andZ; (Y1, - + -» Yms 235 - . ., Zp)0ccuring in the right-hand sides of system (3. 1)
are independent of variables Zz.4y, . . ., %p, i.e., the functions Y ;** and Z;
have the form

Yi** = Yi** (yl, e s Ymy Zyy - .,Zr) (3.4)
Zj = Zj (yl’ e ooy Ymy 21y . . .,Zr)
In this case, theorems analogous to Theorems 1 and 2 can be obtained under the ass-
umption that the variables z,41, . . ., 3, of system (3, 1) are arbitrary, i.e., can
be unbounded (but are  z -continuable [2] ). Indeed, let the following conditionsbe
fulfilled, with due regard to (3,4), for the right-hand side of system (3. 1):
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AY*(0,...0,2,...,2)=0, Z;0,...,0,z,...,2)=0;

B) functions (3,4) do not contain terms linear in y,, . . ., ¥mj

C)the variables 2, . . .,2. of system (3, 1) are always bounded, (the variables
Zpsly - 4 -2 Bp  are arbitrary),

Under conditions A} — C) theorems analogous to Theorems 1 and 2 canbe obtained by
the method in [4, 5],

Example 2, Letthe equations of perturbed motion be
V=—ytatst+ Y, ) (3.9)
2 =2y (a), 2 = =25+ Z3(y, 2)
23" = z3 + 323 + Z3 (y, z)

We take it that variable z; of system (3. 5) is always bounded. We consider the ques-
tion of the asymptotic stability of the unperturbed motion of system (3. 5) relative to
variable y. After the reduction of system (3. 5) to the system of p -form asinSects,
2 and 3, we obtain the following system of equations;

y=—y+pn+Y(y, z)
W=+ 2y Y, 7)), ml = —6p — T+ 2 (y, z)
o =2 (n), 2 =21+ Z,(y z)

23" = 2y + 323 + Z3 (y, z), po= zo%z4

(Zy = 22923 + 25223, Z; = —22,25Y + 3z,Y)
We assume the fulfilment of; conditions 1 and 2 by function Y (y, z;) andof condi-
tions A) and B) by functions Z, (y, z;) and Z; (y, z;). Then, according to [4] and
to Sects. 2 and 3 of the present paper, the unperturbed motion of system (3. 5) is asy-
mptotically stable relative to y under the condition that variable 2z is bounded,

4, Let Egs, (1.3) of perturbed motion have the form

ay, P (4.1)
= :Yi(yl,...,ym)—}—Zbilzl, i=1,...,m

=1
dz Ld

T =Ly + Y i, J=1,.

=1

In contrast to Sects. 2 and 3 we do not require the boundedness of variables z;, . . .,

Z, of system (4. 1) when investigating the latter, It is evident that the assumptions
in [3] carry over completely to system (4.1). Krasovskii has investigated second- and
third-order systems of form (4. 1) in connection with the problem of motion stability
in-the-large [6,7]. We consider the system [6]

. (4.2)
¥ = f1(y) + buzy + bypz,
20 = fo () + duzy + dipzs, 2 = f3 () T du + dy92,
We accept the fulfilment of the condition
big - budyy — dyybis (4.3)

by byodyy — byydas
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Sufficient conditions were derived in [6], under which the unperturbed motion of sys-
tem (4.2) is stable in-the-large, The domain in which these conditions hold is called
domain ' . Let us consider the question of the stability in~the-large of the solution
Yy =2z, = 2z, = 0 of system (4. 2) 1elative to varialbe y and let us compare the
stability domain obtained with domain T.

We introduce the new variable p = bz, + by,z,. Since condition (4. 3) holds,
in the new variables system (4, 2) appears thus;

yo=h@ e =) - ke 4.4
(]44 () = busfa () - buats (¥), k = bigdai + budy __ budis + blzdza)

bll blZ

and the behavior of variable y of system (4, 2) is completely described by system(d. 4),
The domain in which the unperturbed motion of system (4, 4) is stable in-the-large [7]
is called domain I'*. It can be shown that domain I'* is wider than domain T,
i.e., the domain of stability in-the-large of variable y of system (4. 2) is wider than
the domain of stability in-the-large of all the variables characterizing the state of
this same system,

5. Let the equations of perturbed motion of a controllable system be

d m (5. 1)
dy;—zazhyh*l”zbtzz‘**h-tf(“ i=1,...,m
1
dz-
'Ez“‘ = anhyk -+ nglzz +hif(0), j=1,...,p
=1

0'=ﬁ1y1 ---+ﬁmym+ﬁm+lzl+--~+ﬁnzp

where ay, by, e, i1, by, Ry PBi are constants and f (o) is a continuous func-
tion satisfying the condition

0f(6)>0 when 650 (5.2}

In the investigation of system (5, 1) we do not require the boundedness of its variables
23, « - -y Zp . Let us consider the problem of the absolute stability of the unperturbed
motion of system (5, 1) relative to variables ¥y, . . .,y¥,. This problem generalizes
the well-known Lur'e problem [8].

Definition. The unperturbed motion of system (5. 1) is said to be absolutely
stable relative to y,, . . ., ¥y, if itis stable relative to y,, . . .,y under any init-
ial deviations and for any choice of function f (o) satisfying condition (5, 2).

Let us show that the problem posed can be reduced to the problem of absolute stab-
ility of a specially chosen system of the same form relative to all variables, wherethe
latter system's dimension can be less than that of the original system, To do this,
following {3] we introduce the new variables

Mi:bi1z1+---+bipzm i=1,...
ﬂ:ﬁm+121+'--+ﬁnzp

(5.3)



484 v.1. Vorotnikov

(we assume that variables (5. 3) are linearly independent; otherwise, from (5.3) we
choose the linearly-independent ones),

Two cases are possible when such new variables are introduced. In the first, sys-
tem (5,2) is reduced to

&y, 1 5.4)
Ti=2‘aikyk+m+hif(0) (
=1

dp“ m m
o T Zcm*yk + Zejzp'z +e*n4hi*f(o), iGi=1,....m
I=1

Ke==1
U WA YIRS )
k=1 {==1

o=y, + ...+ Bn¥a +n

i.e., the behavior of the variables characterizing the state of system (5, 4) determines
completely the behavior of variables y,, . .., ¥ of system (5.1), Systems of form
(5.4) are called systems of u -form of the original system (5.1)., In the second case,
when system (5, 1) does not, after the introduction of variables (5, 3), reduce to the

p ~form, by the scheme in [3] we can show that system (5. 1) can always be brought
to the m -form at a finite stage of repeating the procedure of introducing new variabl-
es, The dimension of the system of u -form does not exceed that of the original sys-
tem (5, 1); to be precise, the following is valid.

Lem ma, Inorder that the dimension of the system of p-form of system (5. 1)
equal IV, it is necessary and sufficient that the rank of the matrix K= (B, DB, .
., DPB) eqal N — m (here B = {by, i}, and D = {d;;} are matrices
of appropriate dimensions).
Thus we obtain the following result,

Theorem 3. Forthe absolute stability of the unperturbed motion of system
(5.1) relative to y¥q, . . .,Ym, it is sufficient that the system of m -form be absolut-
ely stable with respect to all variables. When the rank of matrix K equals p, the
problem being analyzed is equivalent to the Lur'e problem.

Let us present an example of the effective use of the method indicated.  This
example shows it is possible to have automatic control systems that are not absolutely
stable with respect to all variables, but can be absolutely stable with respect to a part
of the variables,

We consider the case when the matrix of the linear part of equation system(5. 1)

has two zero roots, i.e., Eqs. (5.1) are
m

dy. .
= Y et ) =t
k=1
dzjfit =i (3), dmfdt="af (); ©=0Cy+Brat: brta

(5.5}

where y, and vy, are constants, ¢’ isa constant vector. System (5.5) hasa non-
zero equilibrium position; therefore, its unperturbed motion cannot be absolutely stable
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in all variables [9]. Let us consider the problem of the absolute stability of the un-
perturbed motion of system (5, 5) relative to  y,. .., ym,. For this we introduce a
new variable: ymu= B;z, -+ Baz, where 7t1<(0 isa constant. The systemof p -
form appears as

dy; . b
dat

k=1
dp/dt =Tf(s); os=¢cy+yu, <0 T=1/y(;z -+ Bazg)

Gl TR (0), i=1,ee,m (5. 6)

The well known absolute stability conditions for system (5, 6) (see [9] ) are the stabil-
ity conditions for system (5,5) relative to  yi,e .y ¥m-

The author thanks V. P, Prokop'ev under whose direction the work was carried out,
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